CONCRETE END DIAPHRAGM

PLATE - CAST WITH BEAM. SEE DETAIL B303.

ACHAINER

THREADED INSERTS

CONCRETE END DIAPHRAGM

PLATE - CAST WITH BEAM. SEE DETAIL B303.

Camber Diagram

Camber Diagram shown is after diaphragms are in place.

Dead load deflection shown is for weight of slab, wearing course, barriers, sidewalks and median where applicable.

Total losses are calculated to correct grade and specified slab thickness. See copy elevations to the engineer.

Additional information.

Provide handling hooks or devices as required by contractor.

Mark each beam showing bridge number, casting date, and individual identification number and lengths on the face or elsewhere so located that they will be exposed after the end diaphragms have been cast. Mark fascia beams on the face. Insure all markings are stenciled and clearly legible for location of beams. See framing plan.

Semi-integral abutment details shown are for prestressed concrete beam. See spec. ends.

See framing plan for beam end marked "X" and diaphragm spacing.

As an alternate to the diaphragm anchorage shown, the contractor may submit details of a cast-in-place anchorage to the engineer for approval. Anchorage must provide an ultimate pull out strength of 24 kips per anchorage. See Detail D. 8 wire low relaxation prestressing strands, conforming to ASTM A416, Grade 186.

Apply an approved sealer to the sides of the beam near each end for the special provisions.

1. Minimum concrete strength at time of prestress transfer.
2. Minimum concrete strength when beam can be transported and installed.
3. Draped strands.
4. Straight strands.
5. Steed strands to smooth finish and apply bond breaker per approved products list.
6. Center of gravity of hold downs when multiple hold downs are used.
7. Rough float and broom finish for bond in accordance with spec. 2405.30.
9. TIP. CUR. FOR ENTIRE BOTTOM FLANGE.
10. Optionally, 1" dia. dia. sleeving for hauling/water installation, coat with approved epoxy bonding agent & till with approved non-shrink grout.

Design notes:

MINIMUM CONCRETE STRENGTH - KSI

ELASTIC SHORTENING LOSS - KSI
LONG TERM LOSSES - KSI
TOTAL LOSSES - KSI

<table>
<thead>
<tr>
<th>Bracket</th>
<th>1 ft</th>
<th>2 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ft</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>2 ft</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>3 ft</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>4 ft</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>5 ft</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>6 ft</td>
<td>20</td>
<td>18</td>
</tr>
</tbody>
</table>

Figure 5-397.532

Y Distances (inches)

TOTAL STRANDS

DIAPHRAGM STRANDS

STEEL INTERMEDIATE DIAPHRAGM

PRECAST INTERMEDIATE DIAPHRAGM

PRECAST DIAPHRAGM