

Using Atlas 14 Precipitation Data for State Aid Projects

MnDOT Bridge Hydraulics Updated December 2015

Your Destination...Our Priority

Overview

- Part I: About Atlas 14
 - Background
 - Implementation
 - Impacts to State Aid Local Transportation projects
- Part II: Gathering & Using Atlas 14 Data
 - Downloading Data
 - Rainfall Distributions
 - Regionalization for Rational Method

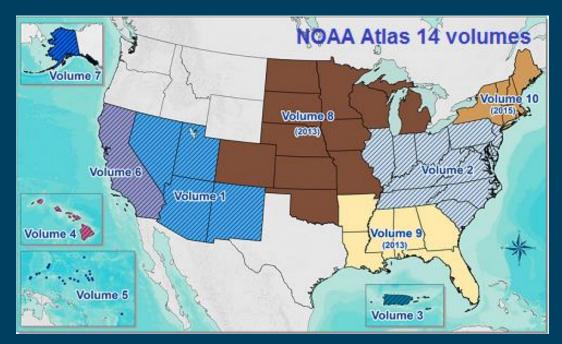
Part I:

About Atlas 14

Background

The current MnDOT Drainage Manual uses TP-40 (1961) and Hydro-35 (1977) for rainfall

 Concern within the state that TP-40 was not representative of the precipitation we've been seeing



Background

- NOAA is nationally accepted as a source of precipitation data and analysis
- Worked through a FHWA pooled fund with 10 other states to fund a regional study

Background

- Within Minnesota, project funded by:
 - MPCA using a Legislative Citizen Commission of Minnesota Resources (LCCMR) Grant
 - MnDOT Research
 - City State Aid

What is Atlas 14?

Atlas 14 provides precipitation frequency estimates

Precipitation Frequency Data Server (PFDS)
http://hdsc.nws.noaa.gov/hdsc/pfds/

Interactive Map

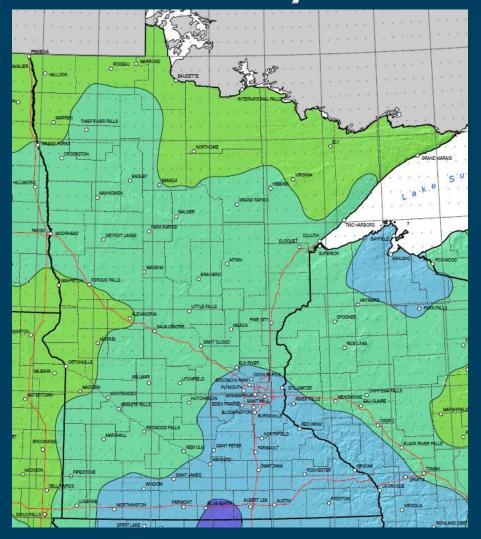
TP-40 vs. Atlas 14

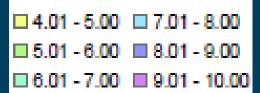
- ▶ TP-40 was published in 1961
 - Fewer stations
 - Less length of record
 - Included the Dust Bowl
 - Topographic effects were not accounted for

TP-40: 100 year-24 hour

TP-40 vs. Atlas 14

- ▶ Atlas 14 was released April 2013
 - Includes 50 more years of data
 - More stations





Atlas 14: 100 year-24 hour

Volume 8 project area.

Impacts of Atlas 14

- Some precipitation frequency estimates are going up, some are not changing, a few are going down. Depends on:
 - Frequency = how often it happens
 - Duration = length of event
 - Location
 - What you are comparing it to, TP-40 (depth of rainfall) or MnDOT IDF curves (intensity of rainfall)

Is Atlas 14 Evidence of Climate Change?

Is Atlas 14 Evidence of Climate Change?

- Atlas 14 is based on historical data and was not meant to analyze climate change
- The impact of potential changes in climate on precipitation frequency estimates is uncertain.

Hydrologic Models

Rainfall-Runoff Methods (use Precipitation Frequency data) Statistical Flow Methods (do not use Precipitation Frequency data)

Hydrologic Models

Rainfall-Runoff Methods

(use Precipitation Frequency data)

Statistical Flow Methods

(do not use Precipitation Frequency data)

NRCS (SCS) Method

Rational Method Stream Gauge Analysis Regression Equations

NRCS (SCS) Method

- Based on precipitation depth (inches)
- Typically used for designing small culverts, pond outfalls, ...
- Atlas 14 data shows increasing trend for 24 hour duration less frequent events (e.g. 100 year), and less impact for more frequent events (e.g. 5 year)

Hydrologic Models

Rainfall-Runoff Methods

(use Precipitation Frequency data)

Statistical Flow Methods

(do not use Precipitation Frequency data)

NRCS (SCS) Method Rational Method

Stream Gauge Analysis Regression Equations

Rational Method

- Based on precipitation intensity (inches/hour)
- Typically used for storm drains and catch basin spacing
- Atlas 14 data shows not much increase for typical design durations and frequencies, decreases in some situations

Hydrologic Models

Rainfall-Runoff Methods

(use Precipitation Frequency data)

Statistical Flow Methods

(do not use Precipitation Frequency data)

NRCS (SCS)
Method

Rational Method Stream Gauge Analysis

Regression Equations

Stream Gauge Analysis

- Based on historical stream gauge data
- Used for bridges and large culverts
- Already using most current data available

Hydrologic Models

Rainfall-Runoff Methods

(use Precipitation Frequency data)

Statistical Flow Methods

(do not use Precipitation Frequency data)

NRCS (SCS) Method

Rational Method Stream Gauge Analysis Regression Equations

Regression Equations

- Used for Bridges and large culverts
- Does not use precipitation frequency data
- Equations have been updated approximately every 10 years
- Streamstats uses these equations

Flood Insurance Studies (FIS)

- Can be based on a number of different methods
- Could be based on out of date rainfall or stream gauge data
- Will need to look at particular study to find out

MnDOT Design Criteria

- Based on specified event frequency, not a specific model
- Should use the most appropriate method for the specific site

Implementation

- ► Tech Memo <u>15-10-B-02</u> issued Dec 8, 2015 has current MnDOT guidelines for use of Atlas 14 data
 - Supersedes Original Tech Memo 13-08-B-04 issued May 2013
 - Applies to MnDOT projects, local authorities encouraged to adopt these or similar guidelines.
 - Continue to use Atlas 14 Precipitation Depths
 - Changes between original and current tech memo are when using NRCS (National Resources Conservation Service) methods

Implementation

Drainage manual update to come in the future

 Check with other permitting authorities regarding their requirements for Atlas 14 data

Impacts for State Aid Projects

- Storm drain cost share projects
 - Encouraged to use Atlas 14 data

- Cooperative Projects
 - Follow MnDOT Tech Memo 15–10–B–02
 - Confer with MnDOT Project Manager

Impacts for Local Projects

- Drainage Permits from MnDOT
 - Follow MnDOT Tech Memo 15–10–B–02
 - Final decision made by MnDOT District Office

Part II: Gathering & Using Atlas 14 Data

Downloading Data

 Atlas 14 Precipitation Frequency Data Server (PFDS)

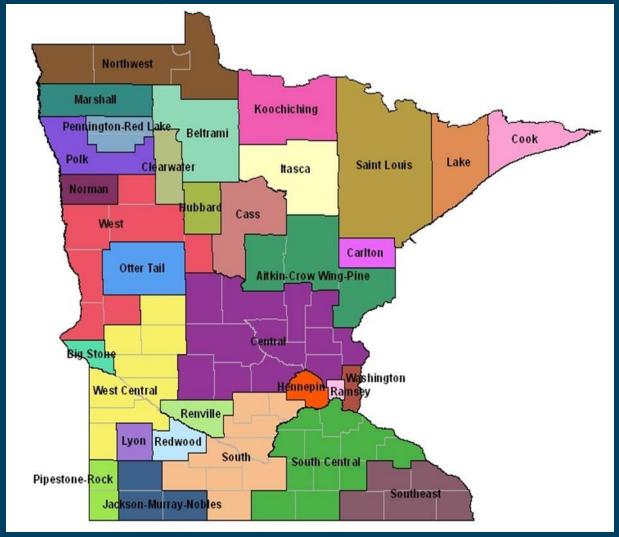
http://hdsc.nws.noaa.gov/hdsc/pfds/index.html

Rainfall Distributions (NRCS Method)

 Site specific distributions can be created based on Atlas 14 data when using the NRCS method

http://www.dot.state.mn.us/bridge/hydraulics/atlas14/pdf/Atlas14_RainfallDistributions.pdf

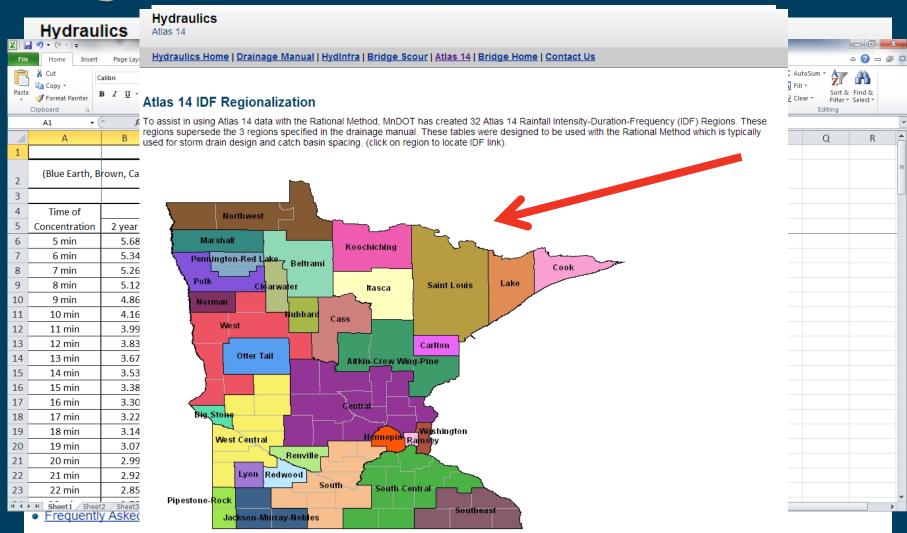
- Or use MSE 3 rainfall distribution developed by NRCS.
- What resource to link to?
- ▶ Do not use NRCS/SCS Type I or Type II Distributions. These are based on TP-40 data and no longer recommended.



→ 32 regions

- IDF (Intensity-Duration-Frequency) Tables were created for each region
- Designed to be used with the Rational method (typically storm drain design and catch basin spacing)

http://www.dot.state.mn.us/bridge/hydraulics/atlas14/atlas14regions/atlas14regions.html



 These values may be conservative for some locations

http://www.dot.state.mn.us/bridge/hydraulics/atlas14/pdf/atlas-14-IDF-regionalization-documentation.pdf

There is always the option to create a location/project specific IDF table

http://www.dot.state.mn.us/bridge/hydraulics/atlas14/pdf/custom-IDF-table.xlsx

Hydraulics

Atlas 14

Hydraulics Home | Drainage Manual | HydInfra | Bridge Scour | Atlas 14 | Bridge Home | Contact Us

Atlas 14

Use NOAA Atlas 14 Frequency Estimates in rainfall-runoff models to compute hydrology for the design of hydraulic infrastructure.

- NOAA Atlas 14 Precipitation Frequency Data Server Data for Volume 8 (Midwest including MN) published April 19, 2013.
- The Hydrometerological Design Studies Centert (HDSC) has released documentation to accompany Volume 8 and 9 of NOAA Atlas 14.

MnDOT Webinar: Using Atlas 14 Precipitation Data for State Aid Projects (August 14, 2013) Registration is not required. Information on how to connect to webinar will be provided by August 7, 2013.

MnDOT Atlas 14 IDF Regionalization

MnDOT Technical Memorandum Lose of Atlas 14 Volume 8 Precipitation Frequency Estimates

Guidance

- Implementation Feasibility Checklist (.docx)
- Tips for Using Atlas 14 Precipitation Data Frequency Server (PDF)
- Atlas 14 Downloading Data using Internet Explorer 8 (Helpsheet) (PDF) (updated May 28, 2013)
- <u>Using Atlas 14 Precipitation Data Frequency Server</u> (April 23, 2013) (PDF)
- Atlas 14 Rainfall Distributions (April 23, 2013) (PDF)
- Customized IDF Table Tool (.xlsx)
- Importing Atlas 14 into HydroCAD (May 2, 2013)(PDF)
- Geopak Drainage Import IDF (May 8, 2013)(PDF)
- . Frequently Asked Questions (PDF)

Other Resources

DNR

Resources

Atlas 14 website

http://hdsc.nws.noaa.gov/hdsc/pfds/index.html

Atlas 14 Volume 8 Documentation

http://www.nws.noaa.gov/oh/hdsc/PF_documents/Atlas14_Volume8.pdf

Contact Information

- Andrea Hendrickson, State Hydraulics Engineer
 - Andrea.Hendrickson@state.mn.us
- Lisa Sayler, Hydraulics Automation Engineer
 - Lisa.Sayler@state.mn.us
- Juanita Voigt, State Aid Hydraulic Specialist
 - Juanita.Voigt@state.mn.us

