Origin-Destination Data Summary
APPENDIX T8 -
ORIGIN-DESTINATION DATA SUMMARY

Introduction

Since 2016, MnDOT has been working with neighborhoods, community groups, district councils, local
governments and others interested in the future of I-94 between St. Paul and Minneapolis in an effort to
plan for transportation changes on and along the freeway. This effort is known as Rethinking I-94. The
work described in this technical memorandum was conducted as part of the initial phase of Rethinking
I-94 conducted between 2016 and 2018.

This memorandum documents the data sources and origin-destination (OD) patterns of traffic that uses
the I-94 corridor between West Broadway Avenue in Minneapolis and TH 61 in St. Paul. Specific
emphasis was given to I-94 mainline segments between I-394 and Highway 55 in Minneapolis, and
between I-35E and Highway 52 in Saint Paul. These areas are characterized by the intersection of several
major freeways that contain high volumes and complex geometry. Understanding user travel patterns is
intended to support future concept development and decision-making as part of the environmental
process.

In addition, this memorandum provides information on left-side access ramps which may contribute to
congestion and safety issues due to the amount of lane changing that is required for specific OD pairs
that have a left-side and right-side ramp combination. This OD traffic data was used in identifying traffic
congestion issues, developing concept designs, and analyzing potential MnPASS concepts and Spot
Mobility improvements, which are discussed elsewhere in the Rethinking I-94 report.

As this study proceeds into the environmental phase, newer data from 2017 should be utilized for traffic
analysis. Year 2018 data should be avoided due to the construction impacts of the I-35W Downtown to
Crosstown Project.

Data Sources

INRIX is a software/data company that provides historical and real-time traffic information, traffic
forecasts, travel times and traffic counts. The OD data provided by INRIX indicates real-world traffic
patterns along the I-94 corridor. The time range of INRIX data used in this study is from September 2015
to November 2015 and covers the seven-county area surrounding Minneapolis. The trip dataset includes
a total of 6.1 million records and the trip path dataset has over 513 million GPS location records. The
data includes individual trip information such as providers, types of vehicle, trip origins and trip
destinations. In addition, the detailed trip path was provided in the format of XY coordinates and time.
The time intervals were usually from 5 seconds to 3 minutes, giving detailed accounts of trip destinations and travel times. INRIX OD data is collected through their network of worldwide anonymized GPS data with coverage of over 250 million vehicle and devices probes. INRIX OD data for each segment within the study area can be found in Attachment 1.

In addition to the OD data, daily AM and PM peak hour traffic volumes (documented in Technical Appendix T5) were used to develop OD matrices for the study corridor. The Daily AM and PM peak hour traffic OD matrices are in Attachment 2. The information contained in these OD matrices was derived from loop detector data and Regional Travel Demand model travel patterns. It should be noted that these can differ from the INRIX GPS OD and travel pattern information.

The main purpose of obtaining OD data is to assist in making informed design decisions. For I-94, the travel pattern data was used to review spot improvement locations, MnPASS access locations and understanding left-side access ramp usage to I-94. These left-side access ramps can create safety and operational issues.

Left-Side Access Ramps

Traditionally, left-side access ramps to freeway facilities have been a concern for MnDOT and FHWA. Left-side access ramps are not always consistent with general design practices since they can create driver confusion and potentially impede long distance users from using the left lane. In addition, left-side access ramps can create weave sections where motorists must make several lane-change maneuvers to reach their exit ramp. An example of this condition currently exists for motorists that enter eastbound I-94 from northbound I-35W that are destined for the 25th Avenue exit. These vehicles enter eastbound I-94 as a merge condition on the left-side of I-94 and must make four additional lane changes over 3,900 feet to reach the 25th Avenue exit ramp, which is on the right. Approximately 2,000 vehicles per day make this maneuver. This condition also exists in the westbound direction where traffic enters I-94 at 25th Avenue on the right and then must weave to the left-side of I-94 to exit to southbound I-35W.

FIGURE 1 – SCHEMATIC OF I-35W TO 25TH AVENUE WEAVE SEGMENT ON EASTBOUND I-94

![Figure 1 - Schematic of I-35W to 25th Avenue Weave Segment on Eastbound I-94](image-url)
However, in certain situations, left-side ramps can be beneficial if designed appropriately and if the traffic volume patterns (OD) support their usage. Left-side ramps can also promote better lane balance which can lead to more efficient traffic flow. This traditionally happens where major facilities intersect and/or where route designations change directions. For example, I-94 in Minneapolis runs north/south on the west side of downtown and then curves to run east/west along the south side downtown. Currently, there are eight left-side entrance ramps to I-94 and seven left-side exit ramps from I-94. Nine of these ramps are on eastbound I-94 and six on westbound I-94. The left-side ramps are listed below.

EASTBOUND I-94

- I-35W North Exit Ramp (diverge)
- I-35W South Entrance Ramp (merge)
- TH 280 Exit Ramp (drop)
- TH 280 Entrance Ramp (add)
- I-35E South Mainline Entrance Ramp (commons weave)
- I-35E North Mainline Exit Ramp (commons weave)
- I-35E North Entrance Ramp (merge)
- 6th Street Entrance Ramp (weave with Mounds Boulevard)
- Mounds Boulevard Exit Ramp (weave with 6th Street)

WESTBOUND I-94

- TH 52/6th Street Exit Ramp (diverge)
- I-35E North Mainline Entrance Ramp (commons weave)
- I-35E South Mainline Exit Ramp (commons weave)
- 12th Street Entrance Ramp (merge)
- TH 280 Entrance Ramp (merge)
- I-35W South Exit Ramp (diverge)

Of the 15 left-side ramps identified above, five of them are a left-side merge or left-lane drop. These are a concern in terms of driver expectation and safety. Left-side diverge and lane add conditions are less of a concern if the travel patterns support the design. All of the 15 left-side access ramps preset a design challenge for any potential MnPASS alternative within the corridor.

Spot Mobility Improvement Locations

Travel pattern information was reviewed with respect to potential spot mobility improvement locations. Information about the identification of these locations, and the concept development process can be found in the *Rethinking I-94 Spot Mobility Evaluation Problem Identification and Improvement Screening*
Technical Memorandum. The travel pattern information was reviewed for locations that were identified as having issues with weaving or that contain a left-side access at the problem location.

TRAVEL PATTERN FIGURES

Travel pattern figures shown in this section utilized INRIX GPS travel pattern information and may differ from balanced OD tables that were derived from loop detectors and the Regional Travel Demand Model. Travel pattern figures for each location are depicted with a series of arrows and percentages. The double sided red arrow indicates the roadway segment of interest. It is double sided in that it is reflecting the source origins of trips passing through that segment, and the destination of trips passing through the segment. Percentages in the figure will sum to 200%, as 100% is totaled for trips entering the segment, and another 100% for destinations of trips leaving the segment.

Travel patterns at the relevant spot mobility locations are discussed below.

LOCATION 3 – WEAVE BETWEEN HENNEPIN AVE/LYNDALE AVE AND SOUTHBOUND I-35W EXIT RAMP

Significant weaving issues have been identified at this location. This is reinforced by reviewing the OD information in Figure 2 below. There is a large amount of local traffic (20 percent) coming from Hennepin and Lyndale Avenues that is not destined for the immediate downstream exit to I-35W southbound. This traffic must weave with the mainline I-94 traffic that is the predominant user of the I-35W exit ramp.
FIGURE 2 – LOCATION 3 TRAVEL PATTERNS
One of the issues identified at this location was the presence of a left-hand merge, which does not follow traditional design standards and can be confusing for motorists. It is shown in the OD information below that a large majority of users are coming from northbound I-35W, which is the intended access for this ramp. It is interesting to note that nearly a quarter of users (23 percent) are coming from I-94. This could be caused by a combination of driver confusion and experienced corridor users queue jumping or wanting to be in the left lane on I-94 to avoid downstream right-lane congestion. Most users of this ramp are destined east of the river.
FIGURE 3 – LOCATION 4 TRAVEL PATTERNS
LOCATION 6 – TH 280 INTERCHANGE

LOCATION 7 – SNELLING AVENUE INTERCHANGE
Locations 6 and 7 were characterized by left-ramp access and weaving to Snelling Avenue. OD information for the left-hand ramp movements and mainline travel patterns are provided in Figure 4. The travel patterns coming from southbound TH 280 indicate that nearly half (47 percent) have desired destinations to Snelling Avenue and Lexington Parkway. Large volumes of traffic from TH 280 cross three lanes of mainline traffic to get to these destinations. This indicates that access from TH 280 should enter from the right-hand side to minimize weave movements.

FIGURE 4 – LOCATION 6 AND 7 TRAVEL PATTERNS
Location 8 was identified because of the short weave distance between Dale Street and the Kellogg Boulevard/5th/10th Street exit ramps. OD information for users of this segment is shown in Figure 5. Over a third of traffic using eastbound I-94 at this location is destined for these exists (the right lane). At a minimum, this traffic is weaving with the entering traffic from Dale Street.
FIGURE 5 – LOCATION 8 TRAVEL PATTERNS
Travel pattern information for Location 9 is shown in Figure 6. Approximately 30 percent of users are coming from I-35E and 39 percent continue on I-35E. While this is a left-hand exit leaving the commons, the I-35E merge into the commons is also on the left, preventing a large regional weave.
FIGURE 6 – LOCATION 9 TRAVEL PATTERNS
Travel patterns for the left-hand on ramp at Location 10 indicate that nearly half of users are destined for TH 52 (Figure 7). However, a direct connect is already provided for this movement to prevent users from having to cross three lanes of traffic in a short (~700 foot) distance.
FIGURE 7 – LOCATION 10 TRAVEL PATTERNS
This segment of westbound I-94 is characterized by many competing ODs and travel patterns, which is represented in Figure 8. The I-35E movement (22 percent in and 31 percent out) is accommodated by left hand entrances and exits. However, a review of the source of the volume to the left hand southbound I-35E exit (Figure 9) shows that nearly a third (28 percent) of the volume is coming from I-94, indicating a high amount of weaving. Additionally, 21 percent of volume using this ramp, which is coming from I-35E, is using the I-94 access to the commons area instead of the I-35E access as would be expected. This results in even more merging in the commons area. This phenomenon could be caused by users who are familiar with the area and know they can still access I-35E southbound by jumping the queue.
FIGURE 8 – LOCATION 13 TRAVEL PATTERNS
FIGURE 9 – LOCATION 13 TRAVEL PATTERNS
OD information shown in Figure 10 for Location 14 indicates approximately 17 percent of users are entering on the left and that over 20 percent are trying to reach the next two exits. This may indicate that the use of a left-hand entrance at this location (the existing configuration) is actually beneficial in this location. The left hand entering vehicles are destined for downstream (since other local access exists) and are removed from the right-hand congestion caused by consecutive right hand off ramps. Use of another right-hand ramp, or removal of the left-hand ramp, could potentially compound this issue. This also suggests a capacity issue at this location.
This ramp is characterized by its high volume and left-hand access. Reviewing the OD data indicates that 30 percent of users are coming from the two immediate upstream entrances from Huron Boulevard or 25th Avenue, both of which are on the right-hand side. The combination of the access geometry and user travel patterns correlates to the congestion that exists upstream of this ramp.
FIGURE 11 – LOCATION 16 TRAVEL PATTERNS
Location 17 is characterized by high crash rates and weaving. It can be seen in the travel pattern information in Figure 12 that 31 percent of users are coming from I-35W and TH 55 combined. These vehicles are entering on the right-hand side and are destined for Hennepin/Lyndale, I-394 and I-94 and must weave with the I-94 traffic that is destined for downtown Minneapolis.
Potential MnPASS Connection Locations

Travel pattern information was examined at potential MnPASS termini locations in both Minneapolis and Saint Paul. These potential connections are shown in Figures 13 through 15. More information on MnPASS connections can be found in the Rethinking I-94: MnPASS Connections Concepts – Local System Considerations Concept Development and Analysis Technical Memorandum. Travel pattern figures shown in this section utilized INRIX GPS travel pattern information and may differ from balanced OD tables that were derived from loop detectors and the Regional Travel Demand Model.

Access to and from I-94 for the Minneapolis connection locations is shown in Figures 16 and 17. The figures show that in the westbound direction, 22 percent (13 percent plus 9 percent) of trips are destined for downtown Minneapolis. Direct free flow access could help facilitate this movement. In the eastbound direction, a similar percentage (21 percent) of trips are accessing I-94 at this location.
Access to and from I-94 for the Saint Paul connections is shown in Figures 18 and 19. The figures indicate that there are large contributing volumes, 28 percent in the eastbound and 20 percent in the westbound direction, destined for or leaving the downtown Saint Paul core at this I-94 access location. Based on user travel patterns, this suggests that this location is a strong candidate for MnPASS connections.
FIGURE 13: OPTION M1 – MNPASS RAMPS AT 6TH STREET/7TH STREET IN MINNEAPOLIS

FIGURE 14: OPTION S1 – MNPASS RAMPS AT 5TH ST./6TH STREET IN SAINT PAUL

FIGURE 15: OPTION S5 – MNPASS RAMPS AT 5TH ST./6TH STREET IN SAINT PAUL
FIGURE 16 - EASTBOUND I-94 TRAVEL PATTERNS AT POTENTIAL MNPASS CONNECTION LOCATION IN MINNEAPOLIS
FIGURE 17 - WESTBOUND I-94 TRAVEL PATTERNS AT POTENTIAL MNPASS CONNECTION LOCATION IN
MINNEAPOLIS
FIGURE 18 - EASTBOUND I-94 TRAVEL PATTERNS AT POTENTIAL MNPASS CONNECTION LOCATION IN SAINT PAUL
Findings of 2015 OD Data Review

Key findings of the OD data review are identified below. This list is not absolute and as the study proceeds into the environmental phase, this data should be used as a resource to evaluate improvements and assist in concept development. It should also be noted that all volume related findings are derived from balanced loop detector volumes and seed OD information from the Regional Travel Demand Model. Travel pattern percentages may differ from INRIX GPS travel patterns.

- Traffic volumes origin-destination patterns in the corridor are not always symmetrical (eastbound OD does not equal westbound OD) due to:
 - Inconsistent access (not all movements are provided) or ramps being on the left-side of the mainline prohibit vehicles from making the maneuver.
 - Eastbound I-94 has 23 on ramps (five left-side) and 18 off ramps (four left-side).
Westbound I-94 has 18 on ramps (three left-side) and 22 off ramps (three left-side).

 - Congestion develops along most of the corridor for at least one hour per day. In the I-94/I-35W commons, congestion exceeds seven hours per day.

 - Vehicles are making the return trip using a different route.

- Approximately 660,000 trips per day (both directions) access I-94 within the study area. Of these, only about 1,000 vehicles per day travel the full length of the study area on I-94 between Broadway Avenue and TH 61.
- Approximately 72,000 trips per day have an origin/destination west of the Mississippi River and have a corresponding origin/destination east of the Dale Street Interchange.
- Approximately 25,800 trips access east I-94 from I-35W South (left-side ramps). Of these, about 3,100 (12 percent) come from/go to 25th Avenue/Riverside Avenue.
- The west ramps at TH 280 (both left side ramps) serve about 28,000 trips per day. Of these, about 8,400 (30 percent) come from/go to I-35W South which are currently left-side ramps. The remaining 70 percent come from/go to locations with access on the right side of I-94.
- The TH 280 ramp to eastbound I-94 (left side lane-add) carries about 22,000 trips per day. Of these, about 5,500 (25 percent) are destined for the Snelling Avenue ramp (right side exit).
- The southbound I-35E ramp to eastbound I-94 (left side merge) carries about 13,400 trips per day. Of these, about 4,000 (30 percent) are destined for the TH 61 ramp.
- Destination patterns for four locations were presented during the study at PMT and TAC meetings. Graphics of these four locations are attached. Key findings of these locations include:

 - Most of the traffic traveling southbound on eastbound I-94 at Broadway Avenue is destined for downtown Minneapolis or locations south of I-94. Only 13 percent of the traffic is destined for locations east of the Mississippi River.

 - Approximately 50 percent of the traffic that enters eastbound I-94 from I-394 is destined for locations east of the Mississippi River.

 - Approximately 40 percent of eastbound traffic near Dale Street continues east past TH 61.

 - Approximately 45 percent of westbound traffic at TH 61 continues west past Marion Street.

- The origin-destination information should be utilized when making design decisions, especially when considering the removal or addition of a left-side ramp.

As this study proceeds into the environmental phase, new data from 2017 should be utilized for traffic analysis. Year 2018 data should be avoided due to the construction impacts of the I-35W Downtown to Crosstown Project.

Prepared by: SRF Consulting Group Inc.
ATTACHMENT 1: INRIX OD DATA
EB TH 55 Entrance to EB I-394 Entrance
EB I-394 Entrance to Lyndale/Hennepin Entrance
EB I-94
Lyndale/Hennepin Entrance to SB I-35W Exit
EB I-94
SB I-35W Exit to NB I-35W Exit
EB I-94
Left Exit to NB I-35W
EB I-94

5th Ave Entrance to Hiawatha Ave Exit
Left Entrance from NB I-35W
EB I-94

NB I-35W Entrance to 25th Ave Exit
WB I-94

WB I-394 Exit to Olson Memorial Exit
Lyndale/Hennepin Exit to WB I-394 Exit
WB I-94

NB I-35W Entrance to Lyndale/Hennepin Exit
WB I-94
11th Ave Exit to NB I-35W Entrance
WB I-94
SB I-35W Entrance to 11th Ave Exit
WB I-94
Left Exit to SB I-35W
WB I-94

Left Entrance from SB TH 280
EB I-94

Left Exit to NB TH 280
EB I-94
Left Entrance from SB TH 280
EB I-94
Dale St Entrance to Kellogg Blvd Exit
EB I-94
Kellogg Blvd Exit to 5th St Exit
EB I-94
5th St Exit to Kellogg Blvd Entrance
EB I-94

Kellogg Blvd Entrance to NB I-35E Entrance
WB I-94
Left Exit to SB I-35E
EB I-94

Left Entrance from NB I-35E
EB I-94

NB I-35E Entrance to NB I-35E Entrance (to EB I-94)
NB I-35E Entrance (to EB I-94) to NB I-35E Exit
EB I-94
Left Exit to NB I-35E
EB I-94

11th St Entrance to Wall St Exit
EB I-94

Wall St Exit to SB TH 52 Exit
EB I-94
Left Entrance from SB I-35E
EB I-94

SB I-35E Entrance to SB TH 52 Exit
EB I-94
SB TH 52 Exit to 6th St Entrance
EB I-94
Left Entrance from 6th St
6th St Entrance to Mounds View Blvd Exit
EB I-94

NB TH 52 Entrance to Mounds View Blvd Exit
EB I-94
Left Exit to Mounds View Blvd
Mounds View Blvd Exit to Mounds View Blvd Entrance
WB I-94

Marion St Entrance to Dale St Exit
WB I-94
5th St Entrance to Marion St Entrance
WB I-94
Marion St Exit to 5th St Entrance
WB I-94
12th St Entrance to Marion St Exit
Left Entrance from 12th St
WB I-94

SB I-35E Exit to 12th St Entrance
University Ave Entrance to SB I-35E Exit
WB I-94

SB I-35E Entrance to University Ave Entrance
WB I-94
Left Entrance from SB I-35E
WB I-94
12th St Exit to SB I-35E Entrance
WB I-94

NB I-35E Exit to 12th St Exit
WB I-94

NB TH 52 Entrance to NB I-35E Exit
WB I-94
Left Exit to SB TH 52 and 6th St
WB I-94
North Mounds Blvd Entrance to NB TH 52 Entrance
Mounds Blvd Exit to Mounds Blvd Entrance
WB I-94

Cedar Ave Exit to 7th St Exit
EB I-94
7th St Entrance to Cedar Ave Entrance
EB I-94
Cedar Ave Entrance to 25th Ave Exit
ATTACHMENT 2: DAILY AM AND PM PEAK HOUR TRAFFIC OD MATRICES
Rethinking I-94 Existing Traffic OD (Year 2015)

<table>
<thead>
<tr>
<th>Origin</th>
<th>Destination</th>
<th>Departure</th>
<th>Hour</th>
<th>Traffic Volume (Veh/h)</th>
<th>Percentage</th>
<th>Total Traffic Volume (Veh/h)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x594</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x604</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x609</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x613</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x623</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x628</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x633</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x637</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x642</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rethinking I-94 Existing Traffic OD (Year 2015)

<table>
<thead>
<tr>
<th>Origin</th>
<th>Destination</th>
<th>Departure</th>
<th>Hour</th>
<th>Traffic Volume (Veh/h)</th>
<th>Percentage</th>
<th>Total Traffic Volume (Veh/h)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x594</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x604</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x609</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x613</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x623</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x628</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x633</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x637</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x642</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rethinking I-94 Existing Traffic OD (Year 2015)

<table>
<thead>
<tr>
<th>Origin</th>
<th>Destination</th>
<th>Departure</th>
<th>Hour</th>
<th>Traffic Volume (Veh/h)</th>
<th>Percentage</th>
<th>Total Traffic Volume (Veh/h)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x594</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x604</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x609</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x613</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x623</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x628</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x633</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x637</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x642</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Peak Vol</td>
<td>Vol %</td>
<td>Exit Vol</td>
<td>Exit Vol %</td>
<td>Thru Vol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>-------</td>
<td>----------</td>
<td>------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marion/Kellogg</td>
<td>327,700</td>
<td>16%</td>
<td>16,000</td>
<td>0%</td>
<td>54,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH 52</td>
<td>11,100</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>12,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-94 at TH 61</td>
<td>8,640</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>8,640</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH 52/6th St</td>
<td>8,600</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>8,600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH 61</td>
<td>13,400</td>
<td>0%</td>
<td>8,450</td>
<td>0%</td>
<td>11,100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12th Street</td>
<td>32,400</td>
<td>86%</td>
<td>10,550</td>
<td>0%</td>
<td>7,700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dale Street</td>
<td>30,000</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>3,120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hennepin/Lyndale</td>
<td>27,540</td>
<td>31%</td>
<td>2,057</td>
<td>0%</td>
<td>6,966</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cedar Avenue</td>
<td>3,600</td>
<td>12%</td>
<td>368</td>
<td>0%</td>
<td>630</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>